Pseudorandomness from Braid Groups
نویسندگان
چکیده
Recently the braid groups were introduced as a new source for cryptography. The group operations are performed efficiently and the features are quite different from those of other cryptographically popular groups. As the first step to put the braid groups into the area of pseudorandomness, this article presents some cryptographic primitives under two related assumptions in braid groups. First, assuming that the conjugacy problem is a one-way function, say f , we show which particular bit of the argument x is pseudorandom given f(x). Next, under the decision Ko-Lee assumption, we construct two provably secure pseudorandom schemes: a pseudorandom generator and a pseudorandom synthesizer.
منابع مشابه
Cryptanalysis of a Pseudorandom Generator Based on Braid Groups
We show that the decisional version of the Ko-Lee assumption for braid groups put forward by Lee, Lee and Hahn at Crypto 2001 is false, by giving an efficient algorithm that solves (with high probability) the corresponding decisional problem. Our attack immediately applies to the pseudo-random generator and synthesizer proposed by the same authors based on the decisional Ko-Lee assumption, and ...
متن کاملNotes in Computer Science 2332
We show that the decisional version of the Ko-Lee assumption for braid groups put forward by Lee, Lee and Hahn at Crypto 2001 is false, by giving an efficient algorithm that solves (with high probability) the corresponding decisional problem. Our attack immediately applies to the pseudo-random generator and synthesizer proposed by the same authors based on the decisional Ko-Lee assumption, and ...
متن کاملIrreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$
We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$. We specialize the indeterminates used in defining these representations to non zero complex numbers. We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$. We then determine necessary and sufficient conditions that guarantee the irreducibility of th...
متن کاملUniversal Representations of Braid and Braid-permutation Groups
Drinfel’d used associators to construct families of universal representations of braid groups. We consider semi-associators (i.e., we drop the pentagonal axiom and impose a normalization in degree one). We show that the process may be reversed, to obtain semi-associators from universal representations of 3–braids. We view braid groups as subgroups of braid-permutation groups. We construct a fam...
متن کاملSemi-algebraic Geometry of Braid Groups
The braid group of n-strings is the group of homotopy types of movements of n distinct points in the 2-plane R. It was introduced by E. Artin [1] in 1926 in order to study knots in R. He gave a presentation of the braid group by generators and relations, which are, nowadays, called the Artin braid relations. Since then, not only in the study of knots, the braid groups appear in several contexts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001